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A method developed in this group which is based on the '~ Electron Pair Approxi- 
mation" (IEPA) is applied to investigate the relative importance of the intra- and interpair correlation 
energies within the valence shell electrons of LiH, Bell2, BH 3, CH 4, Bell, BH~ and BH. The basis sets 
of gaussian type functions were chosen to account for about 85 % of the corresponding correlation 
energies. The results show that the interpair correlation energy can by no means be neglected. 

Mit einer Methode, die auf der IEPA-N~iherung ("Independent Electron Pair Approximation") 
basiert, sind fiir die Hydride LiH, BeHa, BHa, CH4, Bell, BH +, und BH das Verh~iltnis der Interpaar- 
Korrelationsenergie in der Valenzschale zur Intrapaar-Korrelationsenergie untersucht. Die Rech- 
nungen werden durchgeftihrt mit Gaug-Basisfunktionen, die so gew~ihlt sind, dab man etwa 85 % der 
Korrelationsenergie erh~ilt. Das Ergebnis zeigt, dab man die Interpaar-Korrelationsenergie keines- 
falls vernachl~issigen darf. 

Avec une m6thode d6velopp6e dans ce groupe qui se base sur l'approximation IEPA ("Independent 
Electron Pair Approximation") l'importance relative des 6nergies de correlation intrapaire et inter- 
paire est ~tudi6e dans la couche de valence des mol6cules LiH, Bell2, BH3, CH4, Bell, BH~ et BH. Les 
bases de fonctions gaussiennes sont choisies de sorte qu'elles fournissent environ 85% des 6nergies 
de correlation. Le r6sultat montre que la correlation interpaire n'ose pas ~tre n6glig6e. 

1. Introduction 

An i m p o r t a n t  p r o b l e m  of q u a n t u m  chemis t ry  is to develop  efficient me thods  
which go b e y o n d  the S C F  a p p r o x i m a t i o n  and  a l low for the c o m p u t a t i o n  of 
cor re la t ion  effects. To ove rcome  the d i sadvan tage  of the genera l ly  app l i cab le  
CI -me thod ,  name ly  the  s low convergence  of the wave funct ion and  energy which 
unti l  now has h indered  wide appl ica t ions ,  several  p roposa l s  have been  made ,  
e.g. the A P S G - a p p r o x i m a t i o n  [1 ,26] ,  the M C - S C F  a p p r o a c h  [2-51 and  the 
I E P A  t [6, 7]. 

The  c o m m o n  feature of  the A P S G - a p p r o x i m a t i o n  and  the M C - S C F  p rocedu re  
p r o p o s e d  by  Clement i  and  Vei l la rd  [4] is tha t  all conf igura t ions  are neglected 
which differ f rom some d o m i n a n t  t e rm (which in pract ise  is very close to  the 
S C F  funct ion)  by  doub le  rep lacements  of different spa t ia l  orbitals .  This  is often 
expressed by  saying tha t  only  i n t r apa i r  co r re l a t ion  is accoun ted  for, whereas  

1 Independent Electron Pair Approximation, or "Bethe-Goldstone" theory as it is called by 
Nesbet [6] or MET as called by Sinanoglu [7]. 

24 Theoret. chim. Acta (Berl.) Vol. 17 



340 M. Jungen and R. Ahlrichs: 

the interpair correlations is neglected. The general MC-SCF formalism [2] 
does not have this restriction, but in the MC-SCF calculations published so far 
[3, 5], the interpair correlation has been disregarded. For the ground state of Be 
or LiH more than 90 % of the total correlation is of intrapair type [-1, 8, 9] and it 
has been widely believed that similar relations hold for all systems which allow 
for a good localisation of electron pairs like BH 3 or CH 4 [10]. 

Semiempirical estimates [11] and ab-initio calculations within the APSG- 
scheme [12] led however to the conclusion that about 50% of the valence shell 
correlation energy of CH4 is due to interpair effects. The purpose of the present 
paper is to investigate by means of ab-initio calculations, the relative importance 
of the intra- and interpair correlation of the valence shell for the following first 
row hydrides: LiH, Bell2, BH3, CH~, Bell, BH + and BH. 

The method we use is essentially a combination of IEPA and the idea to 
calculate pair functions in terms of their natural orbital expansion [25] and is an 
extension of the method described [8] and used previously by Ahlrichs and 
Kutzelnigg [12, 22]. The method is described briefly in Sect. 2. In Sect. 3 we 
present and discuss the results. 

2. Method 

In this paper we give only a brief description of the method. A detailed study 
which includes the open shell case will be published elsewhere [13]. 

The computation always starts with an SCF-calculation. We use the freedom 
that the SCF-MO's can be subjected to an unitary transformation to localize 
them by the method proposed by Foster and Boys [14]. The choice of localized 
MO's facilitates the interpretation of the results and the comparison which other 
methods, as both the APSG-approximation and the MC-SCF formalism of 
Clementi and Veillard [4] are expected to yield the strongly occupied orbitals 
in a localized form. 

To avoid confusion let us agree on the following definitions: By a "localized 
electron pair" we always mean two electrons with e and ]? spin occupying the 
same localised SCF orbital (this is hence a special case of an electron group as 
defined by McWeeny and Steiner [15]). Furthermore we prefer the term "double 
substitution" instead of "pair excitation". 

Our method is based on the so-called "Independent Electron Pair Approach" 
(IEPA): For any two electrons of the system we calculate an energy increment 
eu or eij(i r  (depending on whether the two electrons belong to the same or to 
different localized electron pairs) by an algorithm which is equivalent to the 
admixing of all possible doubly substituted functions to the Hartree-Fock 
determinant ~ w  (see below). The energy contributions e may sometimes be 
called "Bethe-Goldstone energy increments". 

a) Intrapair Correlation Energy ~ii of a Localiz'ed Pair 

To account for the correlation of the i'th electron pair we use a method 
described preciously [8] which is based on the ab-initio calculation of the quasi- 
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N O ' s  2 Xr of  the cor responding  pair. eu is then ob ta ined  f rom a CI-ca lcula t ion  
with the ansatz  

aOOHF + ~ arO~i = aO(OH~, + Oi), 
r (i) 

O~.~ = O(qh--*Xr, ~ i ~ Z r ) ,  qh = localized SCF-MO,  

which yields the energy E~IF + eu. The quas i -NO' s  were de termined as solutions 
of  the equat ions  

[ K '  + ar(hef f + jr)]  Zr = #Zr, 
hef f = h + ~ (2J k - Kk). (2) 

kg:i 

K, J denote  c o u l o m b  and exchange opera to r s  of  the cor responding  orbitals.  
(To avoid  a lot of  indices we did not  denote  explicitly that  coefficients and N O ' s  
are also referred to the subst i tu t ion of q0,.) T o  assure that  the or thogonal i ty  condi- 
t ion (Z, lZ~)= 6r~ is fulfilled, we in t roduce appropr i a t e  project ion opera tors ;  
for the details the reader  is referred to [8]. 

Stated differently, to describe the corre la t ion between the electrons occupying 
the i ' th localized M O  we replace (p~,  in OHF by aoqhCo i + ~ar)~r-Zr where the 

"cross  terms" (XrZ~ + X~Z,) can be neglected because the )~, ob ta ined  as solutions 

of (2) are app rox ima te  N O ' s  of the cor responding  two electron function 3. 

b) Interpair Correlation Energy eo(i # j) between Localized Electron Pairs 

The m e t h o d  to calculate the energy increment  e u is quite similar to the one 
used for the c o m p u t a t i o n  of eu, but  now we have to deal with two kinds of  doubly  
subst i tuted wave functions depending  on whether  the subst i tuted orbitals are 
coupled to a singlet or a tr iplet  4. If we use again the N O - e x p a n s i o n  of the cor- 
responding two electron functions the singlet case cor responds  to a CI  with the 
ansatz  

b0OHF + ; br ~ 2 2  (O~ + O~-) = bo(OHV + so,j) (3) 

4 

whereas the tr iplet  case cor responds  to a CI  with the ansatz  

1 { l t O , _ r ~ / 3  ~2 t r', ,,' , 'r ~' rr'), = C0(OHF + tO/j) ' (4) r + 2 cr ,j -o , j  + . j  

~oiCo,~oFo j in OHF has therefore  to be replaced by  

b~176 + ~ 1@2 (cP~Z')~r~J + Xr~0'CPJ~r) 
V 

2 By quasi-NO's we denote the NO's of the two-electron-function describing two electrons which 
move in the Hartree-Fock-field of the remaining electrons. 

3 This follows from a general,sat, on of the Brillouin theorem which states that the matrix elements 
of the Hamilton,an vanish between a wave function of given form and optimally chosen orbitals - as 
e.g. ~nF -- and a singly substituted function with respect to it. This theorem has been used to derive 
Eqs. (2), (5), and (6). 

4 For the double substitution of one electron pair only the singlet coupling is possible as the 
total wave function is a pure singlet. 

24* 
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in the singlet case and by 

e r / 1  
COq)iq~iq)j~Oj "Jr- ~r - ~ 1 2  (Zr~iq)j)~r' - )~r'q)iq)j~r "j- ~Oi-~r)~r'~gJ-- q)i-~r')~r~OJ) 

\ 
+ ~oizr~ojz,, + Zr~0iXr, q~j) 

in the triplet case. In contrast to (1) and (3) it is not possible to construct the 
members of the triplet couplet NO-expansion (4) by a substitution of q)i and ~0j 
by the same NO;  we have to deal with two NO's  r)~r, r)~r, and have therefore to 
solve a coupled eigenvalue Eq. (6) [-25]. (In (3) we meet also some difficulties if 
q~ and ~0j have different symmetry behaviour.) 

The equation from which the quasi-NO's sz, have to be determined reads now 

[//2K + (i,j) Zr + br(h~ff + f - �89 ~ + JJ - �89 K j + JO Zr = I~Zr. (5) 

The quasi-NO's r)~ r, T L, are solutions of the following system of coupled equations 

2] /~  K -  (i,j) Z," + cr(heff -Jr- j i  _}_ �89 K i ..1_ j j  -t- �89 K j + j r "  K r') )~ = #Zr~ 

_ _ 2 ~ / ~ K _ ( i , j ) ) ~ + c r ( h e f f + j i + � 8 9  ' = v L '  j , (6) 

h e f  t = h + E ( 2 J k -  Kk) " 
kC:i,j 

The generalised exchange operators K+-(i,j) are defined as 

<)/,, ] g  + (i,j) [ Z,) = �89 [(Xm~O~ [ (P~Z,) -+ (zmq)j I q)i)/.)] �9 

We use again appropriate projection operators to guarantee that the following 
orthogonality conditions are fulfilled: 

<S)~r [SZs> = (~rs, < T)~r I TZs> : (~rs, < T)~r' I T)~s '> : (~r's', <TZr I T)~s,> = O. 

rZ~ and rZ r, are automatically orthogonal because they are solutions of the 
system of Eqs. (6) as is easily verified. 

A detailed discussion of the different aspects of Eqs. (5), (6) as well as the 
algorithm to solve (6) will be published elsewhere [13] (see also appendix). 

Performing a CI-calculation with 4~nv and the doubly substituted terms 
described in (3) and (4) respectively yields seq and re u, the singlet and triplet 
interpair correlation contributions. 

c) Correlated Wave Function and Total Energy 

Within the IEPA the total wave function including all double substitutions 
is approximated as 

i i<j 

where the 4~ and the s'rq~ u are obtained as described above. In order to interpret 
the total correlation energy et in terms of intra- and interpair contributions it is 
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sufficient that the following relation holds approximately 

= Z + Z (% + %). (7) 
i i < j  

In this paper we simply assume that (7) holds without discussing the rather 
involved problem of the additivity of the "Bethe-Goldstone" energy increments 
[6, 7]. A careful analysis similar to the one published previously for the case of 
the intrapair correlation energy [-8] shows indeed that (7) is in error by about 5 % 
of ~t for all the systems considered in this paper except the BH-molecule, where 
the error is expected to be larger. 

d) Advantage of the NO-Method 

Finally we want to demonstrate the advantage of the use of quasi-NO's as 
described above, compared to conventional IEPA calculations (see e.g. [6]). 
For a typical example let us consider the CH 4 calculation being performed with 
40 basis functions (which are linear combinations of a set of 80 gaussian lobe 
functions, see Sect. 3). One has hence 5 occupied SCF-MO's and 35 virtual MO's 
which are available for substitutions. For the calculation of any correlation 
energy contribution eu, %u, r~ij o n e  can construct about 600 doubly substituted 
functions (630 for singlet and 595 for triplet coupling) which have to be considered 
in the corresponding CI. With some experience one may be able to select about 100 
which give non negligible contributions to the energy. If however the CI for the 
calculation of the corresponding correlation energy contribution is performed 
on the basis of quasi-NO's only 6-8 configurations are required for all molecules 
discussed in this paper, whereas the remaining terms give rather neglibigle energy 
contributions. 

This advantage of the NO-method has to be weighted against the disadvantage 
that the quasi-NO's have to be calculated beforehand. 

The computer time required for the calculation of each set of quasi-NO's 
was in the average about 3 to 4 times the time needed for one SCF iteration 
within the same basis set. 

3. Results 

The calculation compared in the Table have been performed with basis sets 
which consisted of linear combination of Gaussian lobe functions. 

~=~c~,u f ,  fu = N exp(-  t / . ( r -  r,)2). (8) 

In this paper we give only a brief discussion of some dominant features of the 
basis sets, for a detailed description the reader is referred to the references given in 
the table. The basis contained s functions (Huzinaga's [16] optimised atomic 
SCF 9s basis for the first row atoms, 5s for H) and p functions (which have to be 
constructed from two lobes [12], up to 5p functions were used) on all atoms. For 
the CH4 calculations a d-like function was included. An additional Gaussian on 
the bond axes was added for all molecules except for CH4, where it turned out to 



344 M. Jungen and R. Ahlrichs: 

Table. Contributions to the valence shell correlation energy 

--EscF gvv s~evv, revv' ~, evv Y~ e w, et~ intra % inter % 
v v < v '  

LiH a 
R = 3.02 
Bell2 b 
R = 2.54 
BH a o 

R = 2.25 
CH4 
R = 2.07 
Bell a 
R = 2.54 
BH~ d 
R = 2.22 

BH o 

R =2.336 

7.9853 0.0318 - -  - -  0.0318 - -  0.0318 100 0 
(7.9873) (0.0341) 
15.7698 0.0312 0.0024 0.0030 0.0624 0.0054 0.0678 92.03 7.97 

26.3932 0.0305 0.0038 0.0058 0.0915 0.0288 0.1203 76.1 23.9 

40.1928 0.0266 0.0050 0.0090 0.1064 0.0840 0.1904 55.9 44.1 

15.1400 0.0262 0.0062 0.0023 0.0262 0.0085 0.0347 75.5 24.5 
(15.1531) (0.0329) (0.0064) 
25.4752 0.0323 0.0062 0.0051 0.0646 0.0113 0.0759 85.1 14.9 

25.1262 0.0328 e 0.0102 0.0075 0.0786 0.0177 0.0963 81.6 18.4 
(25.1314) (0.0356) (0.0199) 

0.0458 f 
(0.0492) 

Energies and bond 
(Esc~) to [21]. 

a Ref. [ 8 ] . -  b Ref. 

lengths are given in a.u. Values in parentheses refer to [18]; in column 1 

[22]. - ~ Ref. [23]. - d Ref. 1-24]. - * bond pair. - f lone pair. 

be unnecessary. A rather rough optimisation of the non linear parameters r/,, 
_r, (see Eq. (8)) and of the contraction coefficients c,,u was performed whenever 
it was considered tO be necessary. For all calculations collected in the table the 
basis sets are expected to account for about 85 % at the corresponding correlation 
energy contributions (except for Bell, where a somewhat poorer basis was used). 
The error in the SCF energies ranges from 0.003 a.u. for LiH to about 0.02 a.u. 
for CHH4 (the SCF-limit for this molecule is rather uncertain [17]). 

In the Table we have included for comparison the results of a recent calculation 
of Bender and Davidson [18] who used Slater type basis-functions. For the 
remaining molecules no study of the correlation energy within the IEPA has 
been published to our knowledge 5. 

Let us now consider the series of molecules LiH, Bell2, BH3 and CH4. The 
most interesting effect is the decrease of ev~ (the intrapair correlation energy per 
valence pair) from 0.0318 a.u. (LiH) to 0.0266 a.u. (CH4) and the increase of ev~, 
(the interpair correlation energy between two valence pairs) from 0.0054 a.u. 
(Belle) to 0.0140 a.u. (CH4). The decrease of e~ is mainly due to the fact that the 
number of 2p-AO's at the central atom which are unoccupied in the SCF wave- 
function and which are hence fully available for substitutions decreases in going 
from LiH to CH 4. The increase of e~,~, is a consequence of the growing differential 
overlap of the localized SCF-MO's which results essentially from three facts: 

a) the decrease of the bond angle, 
b) the shortening of the bond distance, 
c) the change in bond character: the Bell-bond in Bell2 is strongly polarized 

towards the Hydrogen atom whereas the CH bond in CH 4 is almost covalent. 

5 CI calculations for Bell 2 [19] and BH 3 [20] with a rather limited basis set have been published, 
but no decomposition of the correlation energy was undertaken in these papers. 
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This opposite behaviour of G~ and a~, together with the different weighting 
factors with which they contribute to at~ 6 results in a considerable change of the 
relative importance of the intra- and interpair correlation energy contributions 
(see the last two columns in the Table). 

Next we consider the series of isoelectronic molecules Bell2, BH2- and BH. 
The intrapair correlation energy for the bond pair is as expected, almost the same 
for all these molecules. The large intrapair correlation energy of the BH lone pair 
results from the near degeneracy of the 3a-SCF-MO with the 2prc-AO at Boron. 
Rather remarkable is the considerable change of a~, from 0.0054 a.u. (Bell2), 
0.0113 a.u. (BH;) to 0.0177 a.u. (BH) which again is due to the increasing differen- 
tial overlap of the localized electron pairs in this series of molecules (see dis- 
cussion above). The importance of the interpair correlation energy between a 
bond pair and a lone electron is demonstrated by the calculation of the Bell 
molecule. In this case 24.5 % of ~t~ is of "intrapair" type, compared to only 7.97 % 
in Bell 2 . 

4. Discussion 

It was the aim of the present paper to investigate the importance of the inter- 
pair correlation energy between localized pairs and to provide information 
about the phenomena of electron correlation which is necessary to develop more 
efficient and reliable methods to account for the correlation effects in ab-initio 
calculations. We did not intend to perform extremely accurate calculations and 
one or the other value given in the Table may be improved by future treatments. 
The main result is however that the interpair correlation can by no means be 
neglected even for small systems which in addition allow for a good localization 
of different electron pairs in different regions of space. For this reason methods 
like the APSG-approximation [-11 or the MC-SCF formalism proposed by Cle- 
menti and Veillard [4] seem to be rather unsatisfactory. 

The results obtained for the compounds LiH, Bell2, BH3 and CH, seem 
to indicate that there might be some relationship between the interpair correlation 
energy and the number of valence pairs but the results for BH~, Bell and BH 
show that no such simple relationship exists. 

Appendix. Eigenvalue Equations for the lnterpair Quasi-NO's 

Consider a Be-like 4-electron system with ground configuration ~G 
--(q01~lcp2~52). There exist two types of singlet-coupled doubly substituted 
singlet functions, namely 

1 
- = ~ ( ~pr~_~ _ s , r J ,  (9a) S(~ ~}r2 ~ r 2  ~- 1 2 J - -  1-12, 

= 4~1~ + 4~1~) = ~ 12, s(9 (~-~ + ~ia) ~- (~2 + q~2 + (9b) 

6 In the case of n equivalent localized valence SCF-MO's  such as in Bell2, BH3, CHr (n = 2, 3, 4) 
n(n - 1) 

the total valence shell correlation energy is within the IEPA simply given by ~,~ = n ~  v + ~ ~,. 
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but only one type of triplet-couplet doubly substituted functions 

s(9 ~r2 - ~bi2 1 1 ~, 
= ~r~ + ~- (~i2 - 'b~2 + ~ = * ~2, + _ ( 1 0 )  

where s(9 is the projection operator on a singlet eigenstate and ~ denotes the 
Slater determinant one gets if orbitals ~0~, q~j in ~G are substituted by cp k, (p~ resp. 
The orbitals cp are mutually orthogonal. 

In principle Sel2 (see Sect. 2) can be calculated by CI of ~G and all functions 
(9a) and @b); re~z follows from C1 of ~ba and all functions (10). Optimal con- 
vergency of the CI is obtained with a natural orbital expansion, i.e. with an ansatz 
for the correlated wave function, the first-order density matrix of which has 
diagonal form (in the basis of the NO's) [8, 25, 27]. Such an ansatz has to be 
varied not only with respect to the coefficients (as an ordinary CI), but also with 
respect to the orbitals. 

Ansatz (3) (Sect. 2) is a quasi-NO expansion because any two determinants 
in (3) differ in at least two spinorbitals. By variation of the coefficients b and the 
orbitals (p, Z the best function (3) can be found. To simplify the computation we 
choose for cp,, cp2 the corresponding Hartree-Fock orbitals and we determine 
approximate quasi-NO's step by step as in the case of the intrapair correlation 
[8, 25]. Neglecting the interaction of the different doubly substituted functions Zr 
has to be determined by variation of br and (p~ in ~b= ~b G + b j ] /~ .  S~,rr,,2. With 
appropriate projection operators we guarantee that )fi is orthogonal to %,  cp2; 
)~2 is orthogonal to qh, rP2, Z~ and so on. Write the variation of Or as a Brillouin- 
condition (the matrix element of the Hamiltonian between �9 and a singly sub- 
stituted function ~{~ + ~ }  + ~ 2  + ~b}~ - cp, orthogonal to Or and the lower 
quasi-NO's - should vanish). 

( ~  + b ~ ' ~  I Xe I ~ ' i ~ )  -- o. (11) 

This leads immediately to (5), where b r is to be determined by iteration of the 
computation. From (11) follows that the functions (9b) can be neglected in the 
correlated wave function because they approximately do not contribute to it. 

Ansatz (4) is also a quasi-NO expansion if the orbitals Zr, 2r, belong to two 
mutually orthogonal sets {Z}, {)(} of orthogonal orbitals in order that the matrix 
element of a one-particle operator vanishes identically between two terms of the 

n / ~  T ~[_lrr" sum in (4). In analogy to the singlet case optimisation of �9 = q~ + cdv  o 12 

with respect to qo r, Or' leads to the Brillouin conditions 

( % +  crr'I'~ laf  l r~''S'\ = O [ 
" L 1 2 /  (12) 

(4~a r ~r, 0 +Or g/221J/fl wwS''\*12/ I 

and then immediately to (6). Again c, is 
From (12) follows as in the former case 

(10) can be neglected. 
Let us state as a final remark that 

derive alternative formulas with a close 
from (9b) instead of (9a). 

obtained by iteration. 
that in (4) a great number of the functions 

for the singlet-coupled case one could 
analogy to the triplet case by starting 
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